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The numerical solution of a nonlinear hyperbolic equation not fulfilling the strict non- 
linearity condition is considered. A solution procedure is developed based on the random 
choice method, which permits the sharp tracking of discontinuities. As an illustration, 
an application to the two-phase flow of petroleum in underground reservoirs is presented. 

1. INTRODUCTION 

In recent papers Chorin [2,3] has presented a random choice method (RCM) for 
obtaining the numerical solution of systems of nonlinear hyperbolic equations, in 
particular those arising in gasdynamics. It is well known that, in general, the solution 
of such equations develop discontinuities even for smooth initial data. Chorin’s 
method, based on an existence proof due to Glimm [5], is designed particularly for 
the tracking of these discontinuities, a task that conventional numerical methods 
often perform poorly. 

The purpose of our paper is to present a numerical method based on RCM for a 
nonlinear hyperbolic equation of special type, which arises in the study of two-phase 
immiscible flow and does not fulfill the strict nonlinearity condition [7]. A particular 
application to the flow of petroleum in underground reservoirs is considered, and 
numerical examples are given for the Buckley-Leverett equation. 

2. DESCRIPTION OF THE RANDOM CHOICE METHOD 

Consider a single nonlinear hyperbolic equation in one space dimension 

For the problems we shall study, f(u) is twice continuously differentiable, although 
the RCM algorithm may be applied to cases for which f(u) is not this smooth [2, 31. 
The RCM algorithm obtains an approximation to the values of U(X, t) at the spatial 
points xi = ih, i = 0, &I ,... at times fi = jk, j = 0, I ,... and at the points xi+* = 
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154 CONCUS AND PROSKUROWSKI 

(i t- #I at times tj++ = (j f Qk, where h and k are the space and time increments, 
respectively. Denote the discrete approximation to u(ih,jk) by zQ. 

The RCM algorithm consists of a sequence of steps that advances the solution 
forward in time from given initial values uio, i = 0, hl,... . Each time step from ti to 
ti+l consists of two half-steps, one from tj to tj++ followed by one from ti++ to t,,, . 
We consider the first half-step from tj to tj++ , the other one is analogous. 

At time tj , the RCM algorithm takes u(x, tJ to be approximated by the piecewise 
constant function equal to uij in each interval (i - $)h < x < (i + $)h. Then, the 
exact (weak) solution of (1) with this function as initial data is constructed analytically 
for tj < t < t. 3+t , under the assumption that tj++ - t; is not too large. This con- 
struction is carried out by solving, for each i, the Riemann initial value problem 

for t > tj , with 

u(x, tJ = 
! 
y for x < (i + #h, 

a+1 ’ for x > (i + &)h. (3) 

In general 2Q # $+I , so that there is a discontinuity in the initial data (3) at 
x = (i + $)h, from which a wave propagates as t increases. Denote 

u(u) = 9, 

so that (1) is equivalent to 

2 + u(u) g = 0. 

Then if the Courant condition 

+ m;x j a(u)1 < 1 

is imposed, the waves propagated from the discontinuity of each Riemann problem 
do not intersect. Thus, if (4) is satisfied, the solutions of the Riemann problems 
(2, 3) can be joined together to form the solution to (1) at t = tj++ for the initial 
piecewise constant data at t = tj . 

By means of a random choice procedure, this solution is then sampled in an 
interval [-g/z, @z] about each point (i + $))h to obtain the values to be assigned to 
ui::, i = 0, &I ,... . If U(X, t) is the solution of (2, 3), then the value assigned to 
u:+‘: is 

where B,++ is sampled at random from a distribution on the interval [ - 1, 11. 
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An analogous procedure is used to advance from time tj++ to time tj+l , and the 
entire process is carried out repeatedly for increasing values ofj. 

Glimm [5] proved the convergence of this method on the interval - co < x < co 
assuming strict nonlinearity of (1) ( i.e., d2f/du2 # 0) and small oscillations of the 
initial data. Later, Kuznecov and TupEiev [6] removed the restriction of strict non- 
linearity. For our problem the assumption of small oscillations may not hold; however, 
computational evidence indicates that even for such problems, and other problems not 
satisfying the restrictions of the proofs, the RCM algorithm converges [2]. In [2, 31 
Chorin develops the treatment of boundary conditions and the sampling procedures 
for 0 that are crucial for the numerical success of the method. A proper sampling 
procedure ensures not only that the uij are valid approximations to the solution values 
at large times, but at intermediate times as well. 

The RCM algorithm is unconditionally stable, approaches being first order 
accurate, and propagates discontinuities (shocks) sharply without dissipation. 
A small amount of statistical uncertainty is introduced into the solution, but this 
uncertainty is generally entirely acceptable within the accuracy limits imposed by the 
discretization. The introduction of discontinuities by the method is not unnatural 
since, in general, the exact solution of (I) develops discontinuities in finite time even 
for smooth initial data. 

3. SOLUTION OF A RIEMANN PROBLEM 

Success in applying the RCM algorithm depends upon the possibility of solving the 
required set of Riemann problems, and upon doing so efficiently. We indicate how 
this can be done for (2, 3) for thef(u) under consideration. 

For notational convenience we rephrase the Riemann problem (2, 3) as 
follows. Denote by uL the initial value uij to the left of x = (i + &)h and denote by uR 
the initial value u:+~ to the right of n = (i + $)h. Shift the origin to ([i i $]h,,jbc) 
to obtain a local system of coordinates. Then (3) becomes 

.Y < 0, 

.Y > 0. 

We consider in the following subsections the solution in the local coordinates of the 
Riemann problem (2, 5) for t > 0. 

3. I . Basic Results 

Our construction of the solution of the Riemann problem is based upon the 
following results, which can be found in [4, 7, 91, and elsewhere. Tf uL = uR , then the 
solution of (2, 5) is constant: v(x, t) = uL = uR . If uL # UR , then the initial 
discontinuity at x = 0, which separates the constant states uL and UR , will propagate 
as a centered expansion wave and/or a shock (which may be a contact discontinuity). 

To obtain a unique weak solution of (2, 5) the following conditions must 



156 CONCUS AND PROSKUROWSKI 

hold along any curve of discontinuity of u(x, t). Let u- = lims+s v(x, t) and 
- lim,,, Y(X, t) be the limiting values from the left and right, respectively, at the 

zscintinuity? The following must hold (see, for example, [4]): 

(i) (Rankine-Hugoniot jump condition) The curve of discontinuity is a straight 
line with slope 

* = f(o+) - f(v-> ; 
dt V+ - LJL 

and 

(ii) (E-condition of Oleinik [9]) 

f(u+> - f(4 < fk+) - fb-) 
v+ - z’ V+ - IL 

for any D between v, and u- . Condition (ii) corresponds to the condition that the 
chord I-,+(v) joining (v- , f(oJ) and (v+ , f(~+)), 

l-,+(o) = f(v+) + “u,:) 1 {y-j (v - v,), -I 

satisfies 

L+(v) 3 f(d, if v- > 0,. , 

L+(v) G f(v), if V+ > v- , 

for any v between v- and v, . 

3.2. Solution for a Particular f (u) 

In this paper our primary interest is in solving (1) for the particular functions f (u) 
that arise in the study of two-phase immiscible flow in porous media, tar example 
in the flow of petroleum in underground reservoirs. We assume, as usually holds for 
such cases, that f (u) has exactly one inflection point u, , that a(u) = df (u)/du 3 0 in 
the domain of dependence, and that a(u) has its maximum at u = u, . The last two 
conditions are not essential; however, as they are the ones occurring in practice, we 
base our discussion below and Figs. 3-5 on them. The essential feature is the inflection 
inf(u), which introduces a complexity not found in strictly nonlinear cases, for which 
d2fldu2 does not vanish. 

Based on conditions (i) and (ii) of Section 3.1, we obtain the solution of the 
Riemann problem (2, 5) for the f (u) under consideration as follows. 

If U, # uR , let A’,,, denote the slope of the chord Z&U) joining (uL , f (uL)) and 

S. L R = f @RI - f @L) 
’ UR - tir. 
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We must distinguish between the following cases: 

(1) The chord I,,,(U) does not cut the graph off(u) for any value of u between uL 
and uR . Then the value of S,,, lies between U(Q) and a(~,); and 

(Ia) if a(uJ > U(Q), the state u = U, is connected to the state u = uR by a 
shock propagating with speed dx/dt = S,,, ; 

(Ib) if a(uL) < u(uR), the state uL is connected to uR by an expansion wave. 

(II) The chord I&U) cuts the graph off(u) for some value of u between U, and uR . 
Then for our f(u), S,,, > U(Q) and S L,R > u(uJ. In accordance with (i) and (ii), 
two possibilities must be considered: 

(IIa) If uL > uR , we construct the convex hull H(U) to f(u) in (u, , uL) 
(see Fig. 1). 

(IIb) If UL < UR, we construct the concave hull h(u) to f(u) in (u, , uR) 
(see Fig. 2). 

For either (IIa) or (IIb) let uM be the point such that SM,, = u(z&), where 

s . 
M R = f(UR) -.f@d 

. UR - UM 

FIG. 1. The convex hull H(U) to f(u) in the interval (UR, UL) for the case uL > E(~ _ 

FIG. 2. The concave hull h(u) to f(u) in the interval (uL , uR) for the case uL < UR 
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Then the state v = uL is connected to v = uM by an expansion wave, and u = u,,, 
is connected to v = uR by a shock (contact discontinuity) propagating with speed 
dxidt = SMg, . 

For the case in which a(uJ is a minimum, which is the case not considered in this 
paper, S,,, < a(~~), S,,, < u(u,J, and the discontinuity is to the left, rather than to 
the right, of the expansion wave. The constructions above can complicate considerably 
for cases in whichf(u) has two or more inflections. 

3.3. Explicit Form of the Randomly Sampled Solution 

At time t = &k we sample the Riemann solution v(x, t) determined by the proce- 
dure of Section 3.2, at the spatial point x = +Yh, where 0 E [-1, I] is obtained by 
the random sampling procedure (iii) of [2] (see Section 4 below). The same value of 6 
is used for each spatial point of a given time step. We have 

(a) If (la) occurs, 

if Oh/k < SL,R, 
if 9hlk > SL,R . (6a) 

(b) If (Ib) occurs, 

z@9h, &k) = uR , 
I 

UL > if Oh/k < a(uJ, 
if Oh/k > a(uR), t6b) 

a* such that a(u*) = Oh/k, if u(uL) < flhjk < a(ulp). 

(c) If (11) occurs, 

if 8hlk < a(uJ, 
if Oh/k > SMsR = a(uM), (64 

U* such that a(~*) = Oh/k, if u(uL) < Oh/k < S,w,R. 

The value of u* between uL and UR is the one to be taken in (6b), and the value between 
uL and uM is the one to be taken in (6~). Figures 3,4, and 5 illustrate the different cases 
(6a), (6b), and (6~). Note, as depicted in the figures, that the disturbances from the 
discontinuities propagate a distance less than $h during the time interval $k, in keeping 
with the Courant condition (4). The fan of characteristics corresponding to the family 
of solutions u*(O) of a(u*) = Oh/k in (6b) and (6c), typical for an expansion wave, is 
illustrated in Figs. 4 and 5. 

Note that it is straightforward with only a small amount of computational effort 
to determine whether case (Ia), (Ib), or (11) occurs and to calculate the corresponding 
solution of the Riemann problem from (6a), (6b), or (6~). In some cases it is not 
necessary to calculate both f(u) and a(u), and, in general, the most time-consuming 
calculations, those of solving u(uM) = S M,R and a(~*) = Oh/k, will be required for 
only a fraction of the points at any time step. With an efficient root solver even these 
Iatter calculations can be accomplished with only a few function evaluations. 



(a) t 
S 

Aiff!c 
cot a = ah,) 
cot p = s,,, 
cot y = a(uL) 

/I 
I 

a(ul)?SL,R>a(ud 

,,A’ /i;::-y 
X 

v=uL ,o p v=+ 

(b) 

v=uL v=uR 

FIG. 3. Illustration of the Riemann problem solution (6a) for the case (Ia). (a) Characteristics 
from opposite sides of the discontinuity cross, developing a shock S. (b) In a local system of coor- 
dinates, Ois the origin (0,O) and P has coordinates (&SL,, k, &k). The sampledpoint Q has coordinates 
($Vz, $k), -1 < 0 < I. If Q is to the left of P, then LJ = UL , otherwise u = UR. 

cot a = a(qJ 
cot 7 = ah,) 
a(uL) < a(u,) 

(b) 

(i.j) 0 (i+l,j) 
v= UL “=uR 

FIG. 4. Illustration of the Riemann problem solution (6b) for case (Ib). (a) Characteristics from 
opposite sides of the discontinuity diverge, giving an expansion wave, as illustrated by the fan of 
characteristics. (b) In a local system of coordinates, PL is the point (&z(uL)k, &k) and PR is the point 
(&(u& ik). The sampled point Q is ($0/i, ik). If Q is to the left of PL , then Y = UL ; if it is to the 
right of PR , then v = uR ; otherwise the value of L’ is determined by solving the equation a(u) = Oh,‘k. 
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(a) cot a = ah,) 
cotp= s,,, 
cot y = ahL) 
S MR>a(uL) 
S,:, > ah, 1 

(b) 

v = UL v=uR 

FIG. 5. Illustration of the Riemann problem solution (6~) for case (II). (a) Characteristics from 
the right of the discontinuity cross the shock line S; from the left they diverge from it, giving an 
expansion wave. (b) In a local system of coordinates, PL is the point (&J(u& t/c), and P is the point 
(&.r.~ k, &k). The sampled point Q is ($Bh, Sk). If Q is to the left of PL , then v = uL ; if it is to the 
right of P, then v = UR ; otherwise the value of v is determined by solving the equation a(v) = Oh/k. 

4. BOUNDARY CONDITIONS 

In [2,3] Chorin has shown that the accuracy and resolution of RCM are sensitive 
to the manner in which boundaries are treated. Correspondingly, he has developed 
the following sampling procedure. 

Let k, < k, be mutually prime integers with k, odd, and let IZ~ be an integer, 
n, < k, . Construct the sequence of integers 

nz+, = (Q + kd (mod k,). (7) 

Then for the Riemann-problem solutions in the first half-step, use 

when sampling at time t = (j + $)k, and in the second half-step use 

when sampling at time t = (j + l)k, j = 0, l,... . The quantities f$+, and ei+, are 
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selected at random from the uniform distribution on [0, 11. With the above procedure, 
8,++ lies in a subinterval of [-1, 0] and 8,+1 lies in a subinterval of [0, 11. Chorin [3] 
has shown that this procedure prevents the loss of information at boundaries. 

For the porous-flow problem, we wish to solve (1) on a finite interval 0 < x < 
(m + +)h. In the first half time step, from jk to (j + $)k, the value of u:+,$ cannot be 
computed from values of u in the interval 0 < x < (m + $)h at the previous time 
level, and similarly for u:+* in the second half time step. According to the strategy in 
[2,3] the values of &,I and uL>‘*~ must first be obtained through the use of boundary 
conditions. For example, if the birichlet condition ~(0, t) = b, is prescribed, then we 
set uL:~ = 2b, - uv*, whereas if the Neumann condition au/an [(o,t) = b, is pre- 
scribed, then we set u!$* = uF” - b,h, and similarly at a boundary on the right. 

Note that for the porous-flow problem, since a(u) is nonnegative, waves travel to 
the right, in general, as time increases, and it is appropriate to apply a boundary 
condition for (1) at the left end point, but not at the right. The sampling procedure (7) 
and (8) correctly ensures that for this case information travels across the boundary at 
x = (m + &)h only to the right, and the solution obtained by the algorithm is inde- 
pendent of values chosen for &,I . Note that if a Dirichlet condition (or a Neumann 
condition with zero data) is prescribed for this case at x = 0, then the end-point 
condition reduces simply to ZQ = uuo, j = 1,2,... . 

5. MULTIDIMENSIONAL PROBLEMS 

In [2] Chorin has indicated how to extend RCM to problems with more than one 
variable by means of a splitting technique. Fractional steps are taken by sweeping 
in each coordinate direction separately, in such a way that in the mean, the correct 
interaction of fractional waves is obtained. If the boundaries are parallel to the mesh, 
then generalization from a one-dimensional problem is straightforward. If some of 
the boundaries are oblique, then special procedures are required [2]. 

Consider the extension of RCM to the equation 

in two spatial variables on a domain with boundaries parallel to mesh lines. Each 
half-step in time is split into two consecutive sweeps: one in the x direction to solve 
&/at + a&(u)/& = 0, followed by one in they direction to solve au/at + af(u)/ay=O. 
Each sweep is carried out in the same manner as in the one-dimensional case. The 
boundary conditions are treated as described in Section 4 for each coordinate, with 
the other coordinate value fixed. If a value of 4, instead of 1, is used on the right-hand 
side of (4) then the waves from the separate Riemann problems will not interact. 
One may choose a new value of 8 for each sweep, as in [2], or, if symmetry consider- 
ations so require, keep 0 fixed at a single value for both fractional sweeps of a given 
half-step in time. 
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6. APPLICATIONS AND NUMERICAL EXPERIMENTS 

The simultaneous one-dimensional flow of two immiscible fluids through a porous 
medium in the absence of capillary pressure and gravitational forces can be described 
by the equation given by Buckley and Leverett in [I]. We consider the flow of oil 
and water through sand and denote by u the water saturation in the sand. Then the 
Buckley-Leverett equation is 

where f(u) = [I + &,(u)/k,(u)]-l is the flux function of the flowing stream; k,(u) 
and k,(u) are the relative permabilities of sand to oil and to water, respectively; 
oi = pw/pO is a constant, with pL2u and p,, the viscosities of water and oil, respectively; 
Q is the total flow; and $ is the porosity. 

In two spatial dimensions the saturation equation is still a single nonlinear equation 
for the single unknown U, once the total velocity is determined [I I]. Here we investigate 
the behavior of RCM for solving the saturation equation in one dimension, and in 
two dimensions for the case in which the total velocity is constant. In a subsequent 
study we intend to investigate the application of RCM to more complex multi- 
dimensional flows in a porous medium. 

In (9) the flux function f(u), which depends on the relative permeabilities k,(u) 
and k,(u), is such that the assumptions of Section 3.2 are satisfied. That is, df(u)/du 
is nonnegative and has exactly one interior maximum [lo]. It is known from physical 
observation that sharp fronts occur in the spatial distribution of u [l]. 

Several numerical methods have been used previously to solve (9), but none have 
proved to be completely satisfactory. Finite-difference methods employ exceedingly 
small time steps, resulting in excessive computational requirements [IO, Ill. Recently, 
a variational method has been developed, which has the ability of tracking sharp 
fronts [12]; however, it requires the presence of a capillary-pressure term. 

We report here on the results of our numerical experiments with the model flux 
function f(u) (see [I 21) 

f(u) = +q ) - 

4 - = a(u) = 
241 - u) 

du [US + a(1 - u)“]” 

(10) 

The domain of interest is 0 < u < 1, and we take 01 = 4 and Q/4 = 1. The values 
chosen in (8) are k, = 3 and k, = 7. 

For the solutions of the one-dimensional problems depicted in Figs. 6 and 7, 
u is plotted at every k, = 7 time steps. The space and time increments are h = 0.02 
and k = 0.009, for which (4) is satisfied. For the first example, depicted in Fig. 6, the 
initial distribution is u(x, 0) = 0.05 for x > 0, and ~(0, t) = 0.55 for t 3 0. For 
this choice a(~~) > A’,,, > a(~~) holds at the discontinuity for all t >, 0, and the 
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0 0.2 0.4 0.6 0.8 

X 
I! 
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FIG. 6. A one-dimensional problem. The initial distribution is U(X, 0) = 0.05 for x > 0, and 
~(0, t) = 0.55. The solution U(X, t) at every k, = 7 time steps is plotted. The wave is a pure shock 
for all t > 0. 

O> 
0 0.2 0.4 0.6 0.8 

X 
1 

FIG. 7. A one-dimensional problem. The initial distribution is U(X, 0) = 0.1/(x + O.l), and 
~(0, t) = 1.0. The solution u(x, t) at every kz = 7 time steps is plotted. 

exact solution of (1) is a shock traveling to the right with speed S,,, . As shown in 
Fig. 6, the initial discontinuity is propagated by the RCM method sharply, without 
changes. (The nonvertical shock fronts result from the linear interpolation between 
mesh values in the plotting routine.) The average value 1.48 of the shock speedobtained 
from this numerical experiment is in good agreement with the exact value S,,, g 1.49. 

For the second example, depicted in Fig. 7, the initial distribution is u(x, 0) = 
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x 
(4 

(O,l) 
r \ 

X 

(b) 

(4 
FIG. 8. A two-dimensional problem. (a) Contours of r&y; t) for t = 0 (initial distribution). 

(b) Contours of u(x, y; t) after kz = 7 time steps. (c) Contours of u(x, y; r) after 2k, = 14 time 
steps. 

0.1/(x + O.l), with ~(0, t) = 1 .O for t b 0. Here the situations shown in Figs. 3-5 
all occur. Even for this case, a sharp front develops and is tracked by the algorithm 
without difficulty. Carrying out a typical time step (two half-steps) on the CDC-7600 
computer required approximately 18 msec for our FORTRAN program using 
an FTN4 (OPT = 2) compiler. 
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For a two-dimensional example we solve 

on a square, with f(u) given by Eq. (10). The initial distribution is taken to 
be U(X, y; 0) = 0.2/(x + y + 0.2), f or which the contours of u, u(x, y; 0) = const, 
run diagonally across the square. The boundary condition is that the directional 
derivative &/as is equal to zero, where s is arc length along a contour of U. At (0,O)u 
is kept fixed at the value 1. For a uniform spacing h in x and y, the boundary con- 
ditions are discretized naturally as u(-$h, y; [j + ilk) = u($, y - h; [j + ilk), and 
similarly at the other boundary points. The same value of 8 is used for both the x and y 
sweeps at each time step, so that the property that u depends only on x + y is 
preserved. The solution is thus one dimensional in nature, but at an angle of an 
with the coordinate axes. The values of h and k are chosen to satisfy (4) with 3 on the 
right-hand side. 

In Figs. Sa-c, the solutions after 0, 7, and 14 time steps are plotted. The region in 
which the contours are closely drawn represents a sharp front. The smoothness with 
which this front advances demonstrates the ability of the method to track it, similar 
to the case in Fig. 7. The number of mesh points in the x-y plane is 21 x 21. On the 
average our program required approximately 20 msec to carry out a typical time step 
(two half-steps) for this problem. 

The function a(u) in Eq. (10) is depicted in Fig. 9. Subroutines LINESG and 
CONREC from the NCAR graphics package were used for plotting Figs. 6-9. 

FIG. 9. The function a(u) in (10). 
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